• Вопрос по алгебре:

    Основанием прямой призмы является трапеция,высота призмы равна высоте трапеции.Основания трапеции равны 16 и 44,а боковые стороны- 17 и 25.Найдите полную поверхность призмы

    • Автор:

      philipluna
  • Ответ:

    S полн. пов =2430

    Объяснение:

    Sполн. пов=Sбок.пов+2*Sосн

    Sбок.пов=Росн*Н, Н - высота призмы

    Sосн=S трапеции =(a+b)*h/2, h - высота трапеции

    1. ABCD - трапеция

    AB=25, BC=16, CD=17, AD=44.

    дополнительные построения:

    BM_|_AD, CN_|_AD, BC=MN=16

    пусть DN=x, тогда

    AD=AM+MN+ND

    44=AM+16+x,

    AM=44-(16+x), AM=28-x

    2. рассмотрим прямоугольный треугольник АМВ:

    ∠M=90°

    гипотенуза АВ=25

    катет АМ=28-х

    катет ВМ найти по теореме Пифагора:

    AM²=AB²-BM²

    AM²=25²-(28-x)²

    AM²=-x²+56x-159

    3. рассмотрим прямоугольный треугольник DNC:

    гипотенуза CD=17

    катет DN=x

    катет CN найти по теореме Пифагора:

    CN²=CD²-DN²

    CN²=17²-x²

    4. BM=CN, =>

    уравнение: -х²+56x-159=17²-x²

    56x=448

    x=8

    CN²=17²-8², CN=15

    5. S_{ABCD}=\frac{BC+AD}{2}*CN

    S_{ABCD}=\frac{16+44}{2}*15 =450

    6. S полн. пов=(25+16+17+44)*15+2*450=2430

    • Отвечал:

      booiwdv

    Ответов нет, но ты это испарвиш!