• Вопрос по геометрии:

    На окружности по разные стороны от диаметра АВ взяты точки M и N . Известно, что угол NBA =32°.Найдите угол NMB.

    • Автор:

      jaron
  • Как бы не располагались точки M и N, проходит ли отрезок MN через центр окружности или нет, треугольник NOВ является центральным, а угол NMB вписанным, опирающимся на ту же дугу.Это значит, что NMB = ½ * NOB.Найдем значение угла NOB.Для этого рассмотрим треугольник NOB — равнобедренный, так как стороны NO = BO = r — радиус окружности.Следовательно угол ONB = угол NВO = угол NBA = 32°, а угол NOB = 180º – 2 * 32º = 116º.Таким образом, угол NMB = ½ * NOB = ½ * 116º = 58º.
    • Отвечал:

      yosef9kds

    Ответов нет, но ты это испарвиш!