-
Вопрос по математике:
Докажите неравенство a*a-6a+10>0-
Автор:
sabine
-
-
Требуется доказать, что при любых значениях a значение выражения a * a - 6a + 10 > 0.
Преобразуем левую часть неравенства, запишем следующее уравнение и решим его:
а2 - 6а + 10 = 0,
D = (-6)2 - 4 * 1 * 10 = -4.
Так как D > 0, то уравнение не имеет решений, а график функции у = a2 - 6a + 10 не пересекает ось абсцисс.
Так как графиком функции у = a2 - 6a + 10 является парабола ветви, которой направлены вверх, то данная функция принимает положительные значения, т.е. больше 0, при любых значениях a.
Значит, a * a - 6a + 10 > 0 при всех a.
Еще 4 ненужных тебе вопроса, но это важно для поиска
-
Вопрос по математике:
Вынести общий множитель за скобки 2х+6y-
Ответов: 2
-
4 года назад
-
-
Вопрос по математике:
Замени g одночленом так, чтобы получился квадрат бинома g+7z+64z^2-
Ответов: 1
-
4 года назад
-
-
Вопрос по математике:
Молодой человек согласился работать с условием, что в конце года он получит автомобиль «Запорожец» и 2600. Но по истечении-
Ответов: 2
-
4 года назад
-
-
Вопрос по математике:
Разложите на множители x^3-64y^3-
Ответов: 1
-
4 года назад
-