• Вопрос по математике:

    Целые числа a, b и c , таковы что значение выражения a-b+101, b-c+101, c-a+101 являются тремя последовательными натуральными

    • Автор:

      noemi
  • По условию задачи, числа a - b + 101, b - c + 101, c - a + 101 являются тремя последовательными натуральными числами.

    Пусть наименьшее из них равно N. Тогда 2 оставшихся будут (N + 1) и (N + 2).

    Выпишем их сумму:

    S = N + (N +1) + (N + 2) = 3 * N + 3 = 3 * (N + 1).

    Но используя первоначальную запись имеем:

    S = (a - b + 101) + (b - c + 101) + (c - a + 101) = 303.

    Значит, 3 * (N + 1) = 303, N + 1 = 101, N = 100.

    Следовательно, наши 3 числа - это 100, 101, 102.

    • Отвечал:

      lidiacurtis

    Ответов нет, но ты это испарвиш!