• Вопрос по математике:

    Cos(arcsin(-1/4)= ? Sin(arccos(1/7))=?

    • Автор:

      hector
  • 1) Поскольку функция y = arcsin(x)  является нечетной, а y = cos(x) - четной, то:

    cos(arcsin(-1/4)) = cos(-arcsin(1/4) = cos(arcsin(1/4)).

     Рассмотрим прямоугольный треугольник с катетом 1 и гипотенузой 4, тогда 2-ой катет равен:

    √(4^2 - 1^2) = √15.

    Тогда:

    cos(arcsin(1/4)) = √15 / 4.

    2) Рассуждая аналогично п.1, получим:

    √(7^2 - 1^2) = √(49 - 1) = √48.

    sin(arccos(1/7)) = √48 / 7.

     

    • Отвечал:

      gloriaavei

    Ответов нет, но ты это испарвиш!